Ecotoxicogenomic Approaches for Understanding Molecular Mechanisms of Environmental Chemical Toxicity Using Aquatic Invertebrate, Daphnia Model Organism

نویسندگان

  • Hyo Jeong Kim
  • Preeyaporn Koedrith
  • Young Rok Seo
  • Ji-Dong Gu
چکیده

Due to the rapid advent in genomics technologies and attention to ecological risk assessment, the term "ecotoxicogenomics" has recently emerged to describe integration of omics studies (i.e., transcriptomics, proteomics, metabolomics, and epigenomics) into ecotoxicological fields. Ecotoxicogenomics is defined as study of an entire set of genes or proteins expression in ecological organisms to provide insight on environmental toxicity, offering benefit in ecological risk assessment. Indeed, Daphnia is a model species to study aquatic environmental toxicity designated in the Organization for Economic Co-operation and Development's toxicity test guideline and to investigate expression patterns using ecotoxicology-oriented genomics tools. Our main purpose is to demonstrate the potential utility of gene expression profiling in ecotoxicology by identifying novel biomarkers and relevant modes of toxicity in Daphnia magna. These approaches enable us to address adverse phenotypic outcomes linked to particular gene function(s) and mechanistic understanding of aquatic ecotoxicology as well as exploration of useful biomarkers. Furthermore, key challenges that currently face aquatic ecotoxicology (e.g., predicting toxicant responses among a broad spectrum of phytogenetic groups, predicting impact of temporal exposure on toxicant responses) necessitate the parallel use of other model organisms, both aquatic and terrestrial. By investigating gene expression profiling in an environmentally important organism, this provides viable support for the utility of ecotoxicogenomics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology.

Rapid progress in the field of genomics (the study of how an individual's entire genetic make-up, the genome, translates into biological functions) is beginning to provide tools that may assist our understanding of how chemicals can impact on human and ecosystem health. In many ways, if scientific and regulatory efforts in the 20th century have sought to establish which chemicals cause damage t...

متن کامل

Genomic Response in Daphnia to Chemical Pollutants

Chemicals released into the environment have a potential to affect on various species and evaluation of the impacts on ecosystems including aquatic organisms is urgent issue. In order to evaluate chemical effects on various species, it is important to understand their mode of action. Recent advances in toxicogenomics, the integration of genomics into toxicology is promising for understanding mo...

متن کامل

Acute toxicity of titanium dioxide nanoparticles in Daphnia magna and Pontogammarus maeoticus

Titanium dioxide nanoparticles (nTiO2) are the world's second most widely consumed nanomaterial and large quantities of this material enters the aquatic ecosystem annually. Therefore, understanding the effects of nTiO2 on aquatic organisms is very important. The present study used Daphnia magna as a model freshwater organism and Pontogammarus maeoticus as a brackish water organism to evaluate s...

متن کامل

Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity.

Toxicogenomics has provided innovative approaches to chemical screening, risk assessment, and predictive toxicology. If applied to ecotoxicology, genomics tools could greatly enhance the ability to understand the modes of toxicity in environmentally relevant organisms. Daphnia magna, a small aquatic crustacean, is considered a "keystone" species in ecological food webs and is an indicator speci...

متن کامل

Sensitivity of aquatic invertebrate resting eggs to SeaKleen (Menadione): a test of potential ballast tank treatment options.

The introduction of aquatic species in resting life stages by the release of ballast water is a less well-known but potentially important invasive species vector. Best-management practices designed to minimize transport of ballast water cannot eliminate this threat, because residual water and sediment are retained in ballast tanks after draining. To evaluate the potential efficacy of chemical t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015